If ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
  x&{\sin \,\theta }&{\cos \,\theta } \\ 
  {\sin \,\theta }&{ - x}&1 \\ 
  {\cos \,\theta }&1&x 
\end{array}} \right|$ and ${\Delta _2} = \left| {\begin{array}{*{20}{c}}
  x&{\sin \,2\theta }&{\cos \,\,2\theta } \\ 
  {\sin \,2\theta }&{ - x}&1 \\ 
  {\cos \,\,2\theta }&1&x 
\end{array}} \right|$, $x \ne 0$ ; then for all $\theta  \in \left( {0,\frac{\pi }{2}} \right)$

  • [JEE MAIN 2019]
  • A

    ${\Delta _1} - {\Delta _2} =  - 2{x^3}$

  • B

    ${\Delta _1} + {\Delta _2} =  - 2({x^3} + x - 1)$

  • C

    ${\Delta _1} - {\Delta _2} = x\left( {\cos \,2\theta  - \cos \,4\theta } \right)$

  • D

    ${\Delta _1} + {\Delta _2} =  - 2{x^3}$

Similar Questions

The system of equations : $2x\, \cos^2\theta + y\, \sin2\theta - 2\sin\theta = 0$ $x\, \sin2\theta + 2y\, \sin^2\theta = - 2\, \cos\theta$ $x\, \sin\theta - y \cos\theta = 0$ , for all values of $\theta$ , can

If $\left| {\begin{array}{*{20}{c}}{x - 4}&{2x}&{2x}\\{2x}&{x - 4}&{2x}\\{2x}&{2x}&{x - 4}\end{array}} \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2},$ then the ordered pair $\left( {A,B} \right) = $. . . . .

  • [JEE MAIN 2018]

If the system of equations $2x + 3y - z = 0$, $x + ky - 2z = 0$ and  $2x - y + z = 0$ has a non -trivial solution $(x, y, z)$, then $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k$ is equal to

  • [JEE MAIN 2019]

If $1,\omega ,{\omega ^2}$ are the cube roots of unity, then $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\\{{\omega ^{2n}}}&1&{{\omega ^n}}\end{array}\,} \right|$ is equal to

  • [AIEEE 2003]

 If the system of equations $2 x-y+z=4$, $5 x+\lambda y+3 z=12$,$100 x-47 y+\mu z=212$ has infinitely many solutions, then $\mu-2 \lambda$ is equal to

  • [JEE MAIN 2025]